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TABLE 8.9 PARAMETERS FOR ELEMENT EQUATIONS

Element ’ Coordinates
(e) Xi Xj Xt Xt yi »y Y »
4 12 1 Vvipz Vviss o 2 0 12 1/4
6 . 0o . 12 12 1/4 1 12 V312 Vi34
T 12 ¥ 12 o VT4 12 42 VIR s

‘ Parameters : A

Element bi v bj bk ¢t ¢ ck
(&)  yi =k JYk=yi yo=Jj Xk —Xj Xl —Xk xj —xi
4 -1/2 0 1/2 W3 -22 1-v3)2 12
6  (U—VHi2 (V3I=2 112 0 -1/2 B I

1 A=-vVHr 3i-p2 0 a-virz o W3-nr2

There are six elements containing node 5. .
Each element will contribute to the nodal equation determining us. The’
contribution from the elements is as follows:

" Element (2) ‘ us =0.06875
Element (3) 0.5us =0.075
Element (5) 0.5us =0.075

Element (4)  1.5342196us =0.0426976
Element (6) = 0.6484375us =0.1090707
Element (7)  0.6484375us=0.1900744
By summing the above cquations we get -
' 4.8310946us = 0.5605927

which gives
u<=0.1160384

Example 8.10 Use finite elemcnt‘_method to solve the boundary value
problem

pu=-1, |x[<1, |yl<I

4

Fau=0,  Ixl=1, |yl=1
with I:--—L '
On account of symmetry, we need only consider one eighih of the squzre.

We use the triangular net as shown in Figure 8.15(a). The nodal parameie s
ai¢ given in Table 8.7,
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TABLE 8.10 NODAL PARAMETERS FoR ELEMENT EQUATIONS

Element " Nodes
(e) i 7 k
1 1 2 4
2 4 2 'S
3 2 3 )
4 . 5 3 6
5 4 s 7
6 7 5 8
7 s 6 8
8 8 6 9
Element N Coordinates
(e) xi x ) ;7] 17 »
1 0 112 (] 0 0 12
2 0 12 1/2 1/2 0 1/2
3 112 . 1 12 0 0 172
4 12 1 1 12 0 12
S 0 12 0 12 1/2 1
6 0 1/2 1/2 1 1/2 1
7 “1)2 1 1/2 1/2 1/2 1
8 12 1 1 1 112 1
Parameters
Element bi b; b ci cj [
{e) Y=y »n—y n=yj _ Xi=Xj Xj—Xa xj=xi
1 -1/2 1/2 0 -1/2 1] 1/2
2 -1/2 0 172 0 -1/2 1/2
3 -1/2 1/2 0 -1/2 0 12
4 -1/2 0 1/2 0 -1/2 12
(] -12 1/2 0 -12 0 12
6 -1/2 0 1/2 0 -12 12
7 -1/2 12 0 -1/2 0 1/2
8 -1/2 0 1/2 0 -1/2 1/2
1 0 -1 [~ W L
1
A9®=3 0o 1 -1 us p BO=5l 1
-1 -1 2 L. us L 1
2 -1 -1 _‘ ™ us 1
b=
ANgMN=}l -1 1 0 73 =34 |1
-1 0 1 L wus L 1
» 1 0 -1 7] ™ us C 1
oo -]
A®P® =} 0 1 =1 e b® = 2| 1
-1 -1 2 L uy L 1
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The equation (8.227) becomes

-
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-12 48
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-12
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The essential boundary conditions are
w=ue=us=us=ur=|

On incorporating u3 =1, we get

- 24
-12

0
-12

=12 0
48 0
0 1
00
-24 0

-12
0 -24
0 o
48 —24
-24 9
0 -24
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~24

-24
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—
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m o1 ) B o1 r 17
3 ~12 15
1 0 1
3 o |
= 6 |—1x 0 != 6
3 12 L | s
2 0 2
3 0 3
L1J L od L vl
In a similar manner we introduce the other boundary conditions and obtain
28 -2 000001 & 1 [ 17
48 0 0 -24 0 0 00 U2 15 I
01 0 00000 us - 1
00 48 -24 00 0O ua 15
24 0 -24 9 00 0 0 || u 54
0o 0 01000 us 1
00 0 00100 u7 1
00 0 00010 us 1
00 0 00001 JL w ] 1 ]
The equations to determine the unknown can be written as
24 —-12 =12 O w [ 1
-12 48 0 —-24 12 15
-12 0 48 -24 w || 15
0 —24 —-24 96 JL us | L 54
The solution values are given by
w=125 w=121, w=121 wus=1.17

8.8 NONLINEAR DIFFERENTIAL EQUATIONS

The finite element methods outlined in Section 8.5 may easily be applied
to the nonlinear differential equations. The mathématical difficulties are gene-
rally overcome by two approaches. One is to linearize initially the original
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nonlinear differential equations (see Section 5.11) and then solve the prob-
lem by a process of successive linear finite element methods. The other ap-
proach is to formulate directly nonlinear finite element equations and then
numerically solve the resulting system of nonlinear algebraic equations by
the Newton-Raphson method (see Section 4.3). We will now apply these two
approaches to a simple nonlinear boundary value problem.

Example 8.12 Use the finite element method to solve the boundary value
problem

”

= -;-uz
u(0)=4, u(1)=1
with h=1.
The exact solution of the boundary value problem is

u(x)= 0+ )

Applying the Newton linearization process to the boundary value problem,
we obtain

u"(P‘* 1) = 3ll(P)u(P+1) -— _3_-(“(P))2

where the superscript () represents the pth iterate. We now determine (p + 1)th’
iterates from the pth 1terates The variation formulation may be written as

1
J= I[(l,'(9+l))2 + 3P (PN — 3PPt ] dx
0
= minimum

-

The piecewise linear approximate solution over the element (e) for (p+1)th
jiterate is of the form

(“(pn))(e)_N " (P+l)+N u(PH)
Differentiating the element functional J© with respect to u* ) and u*". s
we get the element equation
+———(3z PruP) -1 + (u(')+u(')) uPD —'
—1 +_il_ uf_P)_i_us(P)) 1+ ( (P)+3l (P)') |. u;(f‘{»l) J

(3(u(P))2_1_2u(P) (P)+(u(P))2)

2 (PP 2P+ 3P
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We assume that the numerical solution of (8.240) has been obtained upto
and including at 7=t;and the solution value i1 is the unknown to be deter-
mined. The Galerkin equation (8.16) over the element (e) becomes

tivy

- (€) .

ti

Substituting (8.241) into (8.242) and assuming that the functions f1 (t) and g(2)
are constants in each element, we obtain

Uit = Ui+ -gifw(ui + 2ui41) + hg®
or
(1 + ._l_hf(e))
3 hg(l)
Uip1= 2 U+ >
(3w - 2)

where £ and g'® represent the function values of fand g respectively in each
element (e).

(8.243)

Quadratic Lagrange polynomial
We take the approximate function (@ of the form

u®) = 51,1—-,0 — 1)t =t -1 — hi,(t = ti-1)(t =~ tis )ty

+ 2—1,"20 — t)(t— ti-1)ths+1 (8.244)

where fiy1—ti-1=2h is the length of the element (). Here, the Galerkin
equation (8.242) becomes

tisy
. 1 0) )
J- W(t —1)(t— ti—l)["d—;:—' — ful®)— g] dt=0 (8.245)
tiy
Substituting (8.244) into (8.245) and simplifying we have
Uig1— 'g‘ul + ";—ui—l = -l-hgf“’(8u1+1 + 4wy — 2up-1) + %—hg") (8.246)

Hermite cubic polynomial
The equation (8.55) becomes

u® =133 -2L)ui+hL} Livatti + Li1(3 = 2Lis uis1 = hL eiLiwisr (8.247)

where L; and L1 are the local coordinates associated with the element (e)
and Lis1 = (t— tf)/h. '
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Keeping in view that the derivative value w41 may be determined using
(8.240) if the function value ui+1 is known, the Galerkin equation for the

unknown solution value ui+1 becomes
tist
J 1243 -2Lit1) [‘—h;ti) —fu")—g] dt=
ti
which after integration (using (8.54)) is given by

h , ,
Ui+l = u,— < (w+| - u:)

26 13 22,
© 2 @
+hf [35ui+35ui+l+ 210” 210huH|]+hg0 (8-248)

Hermite quintic polynomial
We use the approximate function in the form

@ = (10L2 = 1514 + 6L} yui + h(4L7 - 7L +3L7) wi +—;— R2L30 - L)ur
+ (I0L}4y — 15Lf + 6Ly 141 — M(ALLy — TLiv + 3LT40) tiie

+—;— 2L (1 = Lot b (8.249)

The Galerkin equation for the unknown solution value ui+1 becomes

141

j (IOL1+| - 15L.4|+6L:+l)(-——— —fu")-—g) dt=0 (8.250)

ti
We substitute (8.249) into (8.250) and use (8.54) for the evaluation of the

integrals and obtain
11
Uis1 +Z—2-h Wit — Zih u;+|

[50 302 bl -+ 362 h’ "l

—~ 2
_u,+ hm-& Houp +hf | St geaoh M +35440

42

2
362 62..,"’“H + 562

* () '
+ 3624+ 3620 55440 “"“]”’g | (8.251)

Stability analysis
We apply the difference schemes to the test equation

{8.252)

u' =Au

where A is a2 constant.
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For A < 0, the growth factors (8.255) decrease for all values of i < 0 and
yroperly approximate the exact solution with accuracy depending on the
»rder of the method. The methods are A4-stable.

Next, we apply the scheme (8.246) to the test equation (8.252) and obtain

8 4 1 _ 1 2 _
(l— I?E)ui“_-?( l+—5—h)ul+T( 1+—h)u,-1=0 (8.256)

15
The characteristic equation for (8.256) may be written as
LIV VPR (PO A WO O S e
(1 ]55)5 3(l+5)f+3(1+155)—0 (8.257)
Substituting £ = (1 +z)/(1 - z) in the above equation we get
2 2.V 4 2), 25
(3—1575)2+3(1 /—1)2 371—0 (8.258)

Using the Routh-Hurwitz criterion we find that the roots of the equation (8.258)
for A < 0, lie on the left half plane for all values of J. Thus, the scheme
(8.246) is A-Stable.

8.9.2 Second order initial value problems

We now consider the numerical methods for solving the linear second
order initial value problem

3,2—;‘ +f(t)§:-‘ +g(u=r(t), tElto, b]

du(to) _ -
it

The Hermite cubic polynomial (8.247) is chosen as the approximate solu-
tion 4. The solution values u and w; are known and we use the Galerkin
method to determine the solution values u,1 and w4 1. The Galerkin equations
are given by

u(to) = uo, (8.259)

fl'+l
(e) e)
J Lﬁ 13- 2Ll+])[4‘—2;:T' +f(z)fll‘;;— +g(Hut - r] dt=0 (8.260)
ti .
e 2,,(€) )
f (- hleHL;)[% + f(t)@dt— +g(Hule - r] dt=0 (8.261)
t

Assuming that the functions f, g and r are constants over the element (e)
we have, after integration,

- 504+ 210Af@ 462h+ 421 @ Uit
l— +156h2g(® - 22h%g®
- 424 42hf© 56h— 4g(p> Uit
+22p%®
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— 504+ 210K R+ RO
— 54h2g'? —13h3g@ [210 ]
= , +| | @
42+ 420 14h+ TR " 35
- 13h%g@ -3h3g?

(8.262)

We may discuss the stability of the method (8.262) by applying itto the
test equation u”+Mu=0 and adopting the procedure in Section 2.9.2. We

obtain

[— 504 + 15672 46211—22%’] [um]

—42+2212 56h— 4hK? U1

— 504 — 5472 — 42h— 13HK? w ‘

= _ ) (8.263)
—42- 132 14h - 3R i

which may be written as

Uirt a ha2 wl T ow
, = , = A A
Ui+t az/h ax w - L

where
an= T—Iﬂ (8820 - 407472 +700%)
an= l L | (88201 13472+ 14h%)
4= TIAT (- 820K +840%*)

an= ‘—fﬂ (8820 — 407472+ 1827i4)
| A | =140(63+2.4F*+ )
TR=h 22 (8.264)

Computing the eigenvalues of the matrix A as functions of A2, we find that
the eignvalues are less than unit modulus for 0 <h? < 9.2. Thus the stability
interval of the method (8.262) when applied to the test equation "= - Ny
is, 0 < Ji# < 9.2. The method does not have the interval of P-stability.

8.10 INITIAL BOUNDARY VALUE PROBLEMS

A simple method to solve the initial boundary value problems is to use
the finite difference approximation in time with a finite element discretiza-
tion in space. This method can be regarded as analysing conditions at a
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In order to get the differential equation at the knot xi;, we write the element
equations for the elements: Xi-1 < x < xand xi < x < xi41 and assemble
these element equations. We obtain

210 -1 1 -1 0 Ui-1

1 1

K3 1 41 D +','15' -1 2 -1 u =0
01 2 Uist _ 0 -1 1 Uil

We put the row corresponding to the knot i to zero and write the semi-dis-
cretization as [

1 . .
5 G-t 4iy + 1) = 71‘7 (1= 2043+ Ui11)
Applying the trapezoidal rule we obtain the Crank-Nicolson method

2 [(ufr}—ur_.) A =)+ @ =)

= 12— [ (Ut +ui-1)— 2" +ul) + @i + uf'+|)]

or (1= 302 +@+6rut ! +(1 =3y
=(1+3r)ur, +@—=6r)up +(1+3r)uf,,

For h= —%—, the nodal points (xi, tn)

are shown in Figure 8.19, where i= 1(1)5, n=0, 1, 2,...

tA

¥ m ]3| &)
- , 0 |
] 2 3 4 5

X

Fig. 8.19 Representation of nodal points
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For r= —;—-, we have
——;—u':'l”=+7u§'“——;—u7ﬂ=—§— 7—:+u'1+—;-u7+n
i=3, n=0,-——12-u§+7u§——;—u1=—;-ug+u§’+ —;—ug
i=4, n=0,—-12-u§+7u1—-;—u§=——52-ug+u2+%ug

incorporating the initial and boundary conditions and the symmetric con-
ditions, we get

1 1_.0 0
Tus— ua=u3+ Su4

5
_—%—u§+7u1=7u§’+u2

7 -1 ul 1 5 ud

M L

Simplifying, we obtain
u) ([19 72 ud

[ul] =§7[36 19] [u‘.’]

[ W) 0.7207 '
> | s ] ) [ 0.5096 ]
For, n=1, we have
' 21 (19 274 0.5194
Lu%] =ﬁ[36 19] [uk] ) [0.3673]
8.10.2 First order hyperbolic equation

We consider the first order hyperbolic partial diferential equation of the
form

or

u o (8.272)

with appropriate initial and boundary condition, where ¢ is a constant. We
use the linear piecewise approximation in the space variable and the Galerkin
method to obtain the semi-discrete approximation to (8.272). We have

u© = Nj()uy(t) + Ne(ou(r)



620 NUMERICAL SOLUTIONS

where
_Xk—X X=X
N;= @ Ne="Tpar>
1(®) = xp—x;

We also have

u du; j_tg_c

o =N g TN,

The Galerkin equations in matrix form may be written as

Xk ’ ’
NjN;  N;jNg i NN, NN« Y w
Rlom, o) Lo <o e 1L oo
x,\L NeN;j  NiNi Ure NiN; NNk Uk
(8.273)
We use thg relations (8.54) to simplify (8.273) and obtain the element

equations -
2 1 uj -1 1 u o
S 1 0 1= B |
1 2 w ]l 2L -11 Uk

We assemble the element equations for the elements

xi-1 Kx < x;and x; < x < Xi41

and obtain
210 i1 -1 10 Ui-1
1 ) ;
114 i +2—Ch- -1 01 w  |=0 (8.275)
01 2 Lot 0 -1 1 Uit

The finite element difference-differential equation at the node ‘i’ for (8.272)
becomes ‘

1 . ..
3 (-1 + 404 + t1i41) +’2% (— i1 +uip1)=0

-

or ( I+ %Si) W+ %— Hxdxtii=0 (8.276)
The Crank-Nicolson discretization may be written as
[ 1+834 o cpuxsx]u?“ - [ 1433 ;—”ms,] ut 8.277)

where p= —%—
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Applying the v
is given by

_2 .o
(l 3sm

We obtain | € |
The difference

Next we tak
(¢) with nodes

The Galerkin ¢
Ci

]
AR
Ci

We now obtait
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bn Neumann method to (8.277), the characteristic equation
o1 (2 a0
5+ Cpi sin Bh) E—( 1 3 Sin® 5 = opisin 0/1) (8.278)

=1

scheme (8.277) is unconditionally stable and nondissipative.
e the piccewise approximate solution over the typical element
ijk (see Fig. 8.12(a)) in the form (8.202).

u'® = Nat; + Njuj + Niuk

tlement equation (8.272) may be written as

¢ Ck [ bi bi bk '— ui
¢k +-2— bi by br \\1/] =0 (8.279)
¢ Ck Lb,- b; bk Uk

1 the difference equation for (8.272) at the node 2’ for the

triangular network as shown in Figure 8.20. We assume the steplengths /

and k& in the x]
quired for de
angular netwo

and ¢ directions respectively. The necessary information re-

veloping the difference equation for (8.272) at ‘2’ for the tri-
rk as shown in Figure 8.20(a) are listed in Table 8.12.

L 5 6 & 5 8
(2) (YA (1) (3)
(1 (3) (2) (4)

1 2 3 1 . ) 3
Fig. 8.20.(a) [Triangular network Fig. 8.20(b) Triangular network
TABiE 8.12 NODAL PARAMETERS FOR ELEMENT DIFFERENCE EQUATION

Element . _ Nodes __
(e) i J k
(¢)) 1 2 4
(2) 4 2 5
3) 2 3 5
“ 5 3 6
Coordinates
(e) xi X, Xk ti t t
1) —h 0 —h 0 0 k
@ —h 0 0 k 0 k
3) 0 h 0 0 0 k
@ 0 h h k 0 k
Parameters ) )
%) bi b bk ci K
n — o ShT 0 a
1 k k 0 h
&2; -k 0 k 0 —h h
3) -k k 0 —h 0 h
0 k 0 —h h

L
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On simplification the linear difTference scheme is given by
/]
(1= 4 waedin]it s[4+ £ i =itn] o
)
+ [1 + L u+ u::,)] Pnis 1

n n " "
= - ]’(llm-H = U -1 )("mLL 1+ 1/:;1— I), ni=1(1)Af

We also have

jal n e} ”
n+ 1 1 u
Wil = k=) + =k {55) +0k?
" m ((l )I"‘T 2 /\ (,,2 )m"{ 0(1\ )
| T cu cu 2
n
\ =tk == —— _k2 ——— =Y
" ( 2 x ).t ot ox | ooxct
1 ("1/2)" 1 on? du ¢ u
" . 2 2 22
== h— 4+ — p2 __[ wh?-
me P\ ), T P\ e i

R Y
1 "(hi’.\') )+O(A )
The numerical boundary condition at x =1 may be written as

n 1 - - W 2 n n .
Vary1=-- —2—/;((14-)Z,+| = (uP)y) + —;—/)2 (-;—( At = @) (e =151)

n " n n n n n
+()rg41 (eag1 = 2ung +uar0) Fung 41 (tarsy = u,u)z)

For h= —;— and p=—,12—. the initial conditions become

0 o |
llo=0, Il|-=’l‘6

o | 0o_9 oo
Uz = ’4—, us ='l—6, g=1

The boundary conditions give
vo=uy—11g=0

0 1 0
V4g=114— U4

1 81 111/, 81 91\
= “7(" ‘ﬁ)*?[?(" z—s‘\(" ﬁ)

=-0.1127
0.1127=0.8873

H4 = ll4

For = 0,p= —:lz—-, we have
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m=1, [1 - 71‘- (u?+2ug)] pg+ [4+ —‘11— (ug— ug)] v?+ [l + 7]1—(2zlg+u?)] v
=- _l_ (uf ~ ul)(u+ 1 + uo)

m=2, [1 - -L- (ug+2u?)] o+ [4+ —:T (W3- u?)] W+ [1 + -%-(Zu§)+ug)] v3
=- —};,_— (= )W + 188 +ut)

m=3, [1 - —i— (ug+2u‘z’)] vy + [4+ —‘11- (ug—ug)] 23+ [l 4-—:;(2u2+u?)] v

=- —;—(uf—ug)(u2+u‘s’+u‘z’)

Simplifying, we get the system of equations
52007 + 14603 = — S
290 -+ 13203 +4308 = — 7
4703 +26803 = —31.6712
Solving, we obtain
Q= —0.0057, th=-00141, v3=—0.1157
Thus we get
ul=00568, wb=0.2359,  u}=0.4468
The analytic solution u(x, 1)=(1+2xt—(1 +4x1)112)/212 gives
Lo1). 11,
u(]— , —8-)—0.0589, u( > % )—0.2229
3 1)\_
u(—4- , -g") =0.4767
8.10.3 Second order hyperbolic equation
We consider the initial boundary value problem
0y JWu
T =0 (8.284)
with appropriate initial and boundary conditions.
The variational formulation is given by

Jul= -;_—Jl( Z—g)z - (gl:-)z) dx dt = minimum " (8.285)

We use the triangular elements in x-¢ plane. The element equations obtain-
ed in Section 8.7 may be used here. For example for a typical triangular
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by the following methods.

(i) Least square method
(ii) Galerkin method
(iii) Collocation method by using x =1/4
and x =3/4 as collocation points.

(b) Write the approximate solution function in the form
w(x) = N1(x)u1 + Na(x)uz
where u1 and u2 denote the values of « at
x=1/3 and 2/3.
Consider the bov.\lndary value problem
U =u~—4xe*
1’ (0)—u(0)=1
() +u(l)=—e
Write the approximate solution in the form
w(x) = No(x) + N1(x)u(0) + N2(x)u(1)

that satisfies the boundary conditions and determine it with the help
of the Galerkin method.

. Consider the initial boundary value problem

ou

5{=a—x2"— 10Qx
u(x, 0)=0, 0<x<1
u(0, )=u(l, 1)=0, t>0

with the approximate solution in the form
w(x, 1) = N1(x)us(t) + N2(x)ux(t)

where ui(f) and u2(f) are the unknown solution values at the nodes 1/4
and 3/4 respectively.
(a) Determine the interpolating functions Ni(x) and Na(x).
(b) Use the Galerkin method to get the system of first order differ-

ential equations

é=Aé+b

where ¢ =[u1 u2]7, A is a real 2 x 2 matrix and b is 2 x 1 matrix.

Find the matrices A and b.
Apply the Galerkin method to the boundary value problem

Pu+du=0, |x! <1, |yl <1
u=0, | x| =1, |y| =1

to get the characteristic equation in the form
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(a) The approximate solution is written as
w(x, y)= Ny + Nauz + N3us

where u1, u2 and u3 denote the values of u at the nodes (0, 0),
(1/2, 0) and (1/2, 1/2) respectively. Using the symmetry of the
problem, determine the interpolating functions N1, N2 and Ns.
(b) Obtain the matrices A and B.
5. (a) Find the variational functional for the boundary value problem
u"=u—4xe*
u (0)-u©@)=1, o« (D+u(l)=-e

(b) Write the approximate solution in terms of two unknown func-
tion values of  that does not satisfy the above boundary conditions.
(c) Determine the approximate solution with the help of the Ritz
method.
6. Find the variational functional for the following boundary value
problem

'r_iz

¥0)=4,y (=1
Determine the approximate solution of the form '
w(x)=(2x = 1)(5x — 4) +4x(1 — x)uz

where u2 is the unknown function value at the node 1.
7. The application of the finite element method to the boundary value
problem
-u'=x
1(0)=u(1)=0
leads to the system of equations
Au=b
Determine the matrix A and the column vector b for two, four and
six elements of equal lengths, using the linear line segment element.
8. Consider the boundary value problem
—u"tu=x
v (0)=1, v (1)=2

Apply the Galerkin method to compute the finite element approxima-
tion for two and four elements. Use the linear shape functions.
9. Set up the equations for the finite element solution of the boundary
value problem
d?u
'— P +fut+g=0,

u(@0)=u(1)=0
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14. The piecewise interpolating polynomial function #(©) (x) which satisfies
the following relations;

15.

@

(i)

(iii)

(iv)

(a)

(b)

(a)

(b)

(c)

the differential equation,

U+ oy = (—X_Tf’;l) (M +-auj) + -(5%}—)- (Mj-1+auj-1), « >0

the interpolating conditions

u® (xj-1) = 1j-1, u® (xj)=u;
the continuity condition

W@ (x;+)=u"(x;-)

w w —
7—tan—5, w—\/ah

where u"()(x;) = M,, (¢) denotes a line segment element, x;_;
< X < x;j and /£ is the length of element

is called the spline in compression.

Prove that the continuity of the first derivative of the function

u® (x) at x = x; gives
h2
j—1=2uj+ujp1= -:;—- (Mj-1+4-2Mj+ Mj41)
Show that the other spline relations may be written as

. /
() mjpr—=m;= 7’ (Mjs1-+Mj;)

.. h
() wy—w= > (mijsr+mj)

where mj=u'® (x;).

Obtain the piecewise quintic Hermite interpolation polynomial by
matching the function values as well as the first two derivative
values at each of the two nodes of the line segment element (e),
Xj € X € Xk

Derive the boundary value problem that characterizes the minima

- of the functional

1
Jlul= %J [P 20 )2+ 12 - 2] dx
0

u(0)=u'(0)=0, u(l)=4u'(1)=0

Develop the linear system of equations describing an approxima-
tion of the problem using only two finite elements and piecewise
Hermite quintic approximate function.
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16. Consider the partial differential equation

du  .O0u _ Q*u _
‘a—t— +u-a—§—a '3;2"+I\M—Q—-0

subject to the boundary conditions

u(0,N=u(l,)=0
The coefficients «, A and Q are known parameters. Assuming the #
varies linearly in the element (e), use the Galerkin method with linear
shape functions to obtain the element equation in the form

u; Ui
A [ ] + Sfe) [ ] = p©
U uj

where x; and x; are the coordinates of the end nodes of the element
.(e) and a dot denotes differentiation with respect to ¢.
Find the matrices A(®), S and b‘).

17. Compute the finite element solution of the following problem

.
%‘;=%‘2—, —I<x<1, t>0

u(-1,D=u(l,t)=0

u(x,0)=100cos3'21

by using six elements in the x-direction with linear shape functions.
Apply the finite differencing to the time derivative to get the difference

equations. Choose At=—l— and integrate until t=—9l-.

18. Consider the heat flow _eqlusation
ou = Pu +cu
ot 0x?
subject to the initial and boundary conditions
u (x, 0)=f(x) 0<xx<

u(0,)=u(l,1)=0, >0

Divide [0, 1] into N + 1 elements with element length 4. Treating du/ot
as a constant and using linear piecewise polynomial, set up the finite
element equation

du
B d_t = Au
where B and A are N x N matrices and u=[u1 ua...un]7.
(a) Find the matrices A and B
(b) Use finite differencing in time to get the finite difference matrix

equation and discuss its stability.
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Yl

Fig. 8.23 Square elements
25. Consider the boundary value problem
Pu=~1
subject to the condition
u=0

on the boundary described by the lines y=0, y=2— V3 x, y= V3 x.
Obtain the finite element equations for the following configuration of
triangular elements. (see Fig. 8.24). The node 4 is at the centroid of
the equilateral triangle 12 3\

Y |

(1)
1 2

Fig. 8.24 Triangular network
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26. Use the finite element method to obtain the difference scheme at the
node ‘0’ of the differential equation
pu+kiu=0
for the following configuration (square) of the triangular elements
(see Fig. 8.25).

[A
Fig. 8.25 Triangular network

27. (a) Determine the piecewise quadratic approximating function of the
form
3
u® =Y N
j]
for the following configurations of rectangular finite elements
(see Fig. 8.26)

Y\

1 2 3

}

K

$l‘ 0 5>X
$

K

lﬁ 7 8

-+ §j ——— t———— fj ———

Fig. 8.26 Rectangular network
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1 2 3 b 5
t% - — 49—
1 .
l 6 7 8 9 10
Tp + + +—
1
l@l 1 12 3 4k 415

Fig. 8.29 Square network

Determine the necessary conditions to be satisfied by the solution of the
variational problem

b u
J= I (pu'?+ qu?— 27J’ f()dr)dx + %‘:—)( —oou(a) + 2yv11(a))
0

a

+’p—é-?—)(ﬁou2(b)—2'}'2U(b))

where v =u(x); p, q and y are prescribed functions of x; f is a prescrib-
ed function of #; @y, %1, Bo, B1, ¥1 and 2 are constants; and a prime de-
notes differentiation with respect to x.

Obtain the element equations for the linear line segment element (see
Fig. 8.9) for the boundary vadlue problem

u@©)=1, '(1)=0
Use Galerkin’s method and, (i) the nonlinear differential equation;
(ii) the quasilinear differential equation.
Using the Galerkin method and the cubic Hermite polynomial, derive
the element equations for the boundary value problem

u'—WP+1=0
u(0)=u'(0)=0
W' (0)=1
Consider the quasilinear differential equation.

Discuss the stability of the difference equations of the boundary value
problem

u” +Ku'' =0
u(0)=4'(0)=0, u'(0)=1
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3s.

36.

37.

38.

39.

where K > 0 is a constant, Use the Galerkin method with the cubic
Hermite polynomial.

Derive the Fuler equation and the boundary conditions to be satisfied
by the solution of the variational problem

a

b y
7= [(PO0 7+ a2+ 200 6( 16y dt )

where p(a) # 0, p(b) # 0.
Obtain the difference schemes for the boundary value problem
y—Ky'=x
W0)=y'(0)=0, y1)=y'(1)=0
where X is a constant. Also discuss the stability of the difference sche-
mes. Use the variational finite element method with the cubic Hermite

polynomial,
Find the element equations for the boundary value problem

3
0= 24,8
8“

u(0) =4, u(1)=2
v(0)=—4 ()= -1
using the cubic Hermite polynomial and the quasilinear differential
equation.
Obtain the difference approximation for the Laplace equation p2u=0
at the node ‘0’ for the two networks as shown in Fig. 8.30.

The Laplace equation p?u=0 over a regular hexagonal network using
the difference method may be replaced by

2 6
51?(;' U= 6!40) =0

6 2 5 6 2 5
3 1

0 3 0 !
7 4 8 7 L 8

Fig. 8,30 Triangular network
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5 6
Fig. 8.31 Hexagonal network

Prove that the same relationship may be obtained by using three node
equilateral triangular finite elements (see Fig. 8.31).

40. Obtain the necessary conditions to be satisfied by the solution of the
variational problem

n

7= [ o ((52) + (34)) a0, 7= 2rx, 0 [ 40 oy dy
2 ;

+ :q[{ aI; g; (— ai($)u? +2aq(s)u) ds

where R is the closed boundary of the region QR and s is the arc
length of dR measured from a fixed point.
41. Find the solution of the boundary value problem

%y, Py 1+e¥ .
it =0 Ixl<L i<t

u=0, |x|=1, |y|=1

Use the three node triangular element and, (i) the nonlinear differential
equation; (ii) the quasilinear differential equation; with A=1.
42. Take the approximate function #(?) on the triangular element with one
curved side as shown in Figure 8.12(d) as
u® =L(1 =2L3)u;+ Lawj+ La(1 —2L1)uix +4 L1 Lauy

where L1, L2 and Ls are the local coordinates. Deduce the element equa-
tions for the curved triangular elements (see Fig. 8.16(b)) arising in
solving the boundary value problem

7= —;—uz in R

u=1 on R
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43

44.

45.

46,

47.

48.

where the domain R is defined by
x2+3)?2 < 1, x =0, y=0

with & =T]'US‘.’ the quasilinear differential equation.
Find the element equations corresponding to a three node axisymme-
tric triangular element for the Laplace equation
o, 1 ou 0%
Fr R i e
Derive the element equations corresponding to a four node tetrahedron
element for the Poisson equation
oy oy o,
o g apn TKU=0

where K is a constant.
Form the variational problem of the differential equation

2 2
( l - ”y)“x,\; - 2",{”}‘”,{): + (l -+ Uv\‘)“yy = 0

Use the three node triangular element as shown in Figure 8.12(a) to
find the element equations.
Determine the Euler equation and the natural boundary conditions for

the functional
] tyl ') 2 " 2
du ou ]
1= | [1G) -G s

no

Also obtain the element equations corresponding to the three node
triangular element. Discuss the stability of the difference scheme for
node ‘0’ as shown in Figure 8.13(a)
Consider the variational problem

ts ! 2.2

o= ] [~ (&) oo

no
Find the necessary conditions to be satisfied by the solution of the vari-
ational problem. Also determine the element equations using the cubic
Hermite polynomial (8.98) defined over the four node rectangular ele-
ment. Discuss the stability of the difference scheme for the node ‘0’
as shown in Figure 8.13(b).
Obtain the Euler equation and the natural boundary conditions for the
functional

b d
- 1{22u\2 | 1 {*u\2  &%u c%u 2y \2 B
J_,”-[i(a——xz) +7(5;2) +aa_x253'2+(l—a)(m})]dx (!_1-‘0

where 2 is a constant.
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49. Derive the element equations for the differential equation
Plu=1
corresponding to the rectangular element (e) as shown in Figure 8.32,

b o a3

l] (e)

N T

0- vy, uy Uy Uyy prescribed

0 7 =y
Fig. 8.32 Rectangular element

with the piccewise approximate function
1@ = Nty -+ Natt,x + Natr,y + Nattr,xp + -« + Ni6tis,xy

where
N1 =fi(§)fi(n) N2=agi(é)fi(n)
Ni=bfi(®)gi(n)  Na=abgi(£)g1(n)
Ns=£2(&)fi(n) Ns=ag26)fi(n)
No=bf2(&)g1(n) Ns=abg28)gi(n)
No = f2(€)f2(n) Nig=aga(é)g2(n)
Nu=bff)gxn)  Niz=abgi(é)f2(n)
Nz =fi1(é)>(m) Nis=agi(§)f2(n)
Nis=bfi(€)g2(n)  Nis=abgi(£)g2(n)
and

fil)=1=32+23 g(t)=t=212+1*
fa(1)=312=27 gAt)=03—12

50. Obtain the differential equation corresponding to the functional

[P a 2 2
- o) (2 .
oo
n oo

Determine the essential conditions to be satisfied by the solution of
the variational problem.



